Zur Konvergenz der einzeitigen Tamm-Dancoff-Methode beim anharmonischen Oszillator

Author:

Stumpf H.1,Wagner F.1,Wahl F.2

Affiliation:

1. 1Max-Planck-Institut für Physik und Astrophysik, München

2. 2Institut für Theoretische Physik der Universität München

Abstract

As in the usual quantum field theory, the states, and therefore also the eigenvalue spectrum of an anharmonic oscillator can be characterized by means of the so-called τ-functions, that is the matrix element of the type 〈0 | qn | j〉. For the calculation of these matrix elements, the equation of motion of the anharmonic oscillator can be used to obtain an infinite set of equations, which define an eigenvalue problem. To solve it a new set of functions, the so-called φ-functions, are introduced by means of a transformation, whose matrix corresponds formally to the WICK rule. An analysis of this infinite system of φ-equations shows that a convergent secular polynomial can be obtained, which exists as a limiting value of the polynomials for the truncated N φ -equationsystems in the limit N → ∞ . It is therefore permissible to calculate the eigenvalues of the infinite system in an approximate way from the truncated systems. Such an approximation procedure is the essential content of the so-called TAMM-DANCOFF method. The above mentioned convergence of the determinants therefore provides its justification. The convergence of the eigenvalues of the truncated systems to the exact oscillator values is numerically examined up to N= 20. The results are satisfactory.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Level-dependent new tamm-dancoff calculations;International Journal of Quantum Chemistry;2009-06-18

2. New Tamm-Dancoff treatment of the classical nonlinear oscillator;Il Nuovo Cimento B Series 11;1983-01

3. Electronic structure from operator recursion analysis;Ferroelectrics;1977-01

4. Anharmonic-oscillator energies with operator recursion mechanics;Physical Review D;1976-12-15

5. Level-Dependent New Tamm-Dancoff Method;Physical Review D;1973-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3