Multiresponse Optimization of Edm Process with Nanofluids Using Topsis Method and Genetic Algorithm

Author:

Prabhu S.,Vinayagam B. K.

Abstract

Abstract Electrical Discharge Machining (EDM) process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR) are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Analysis of variance (ANOVA) and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM) is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA) to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.

Publisher

Walter de Gruyter GmbH

Reference20 articles.

1. Parametric optimisation of EDM on Al - Cu in - situ metal matrix composites using TOPSIS method of Machining and Machinability of Materials No pp;Senthil;International Journal,2014

2. AFM surface Investigation of Inconel with Multi Wall Carbon Nanotube in Electrical Discharge Machining Process using Taguchi analysis of Civil and Mechanical Engineering No pp;Prabhu;Archives Journal,2011

3. Multiple Attribute Decision Making California;Yoon;USA,1995

4. Optimization of Machining Techniques in CNC Turning Centre Using Genetic Algorithm of Science and pp;Ganesan;Arabian Journal Engineering,2013

5. A user - friendly fuzzy based system for the selection of electro discharge machining process parameters of Materials Processing pp;Oguzhan Yilmaz;Journal Technology Vol,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3