Nitric oxide mediates the antidepressant-like effect of modafinil in mouse forced swimming and tail suspension tests

Author:

Omidi-Ardali Hossein1,Badi Abolfazl Ghasemi1,Saghaei Elham1,Amini-Khoei Hossein1

Affiliation:

1. Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Islamic Republic of Iran

Abstract

Abstract Objectives Previous studies have suggested antidepressant properties for modafinil; however, the underlying mechanisms mediating the antidepressant effect of modafinil have not been well recognized in clinical and animal studies. Nitric oxide (NO) is involved in the pathophysiology of depression. We attempted to investigate the possible role of NO in the antidepressant-like effect of modafinil in mouse forced swimming test (FST) and tail suspension test (TST). Methods The antidepressant-like effect of modafinil (25, 50 and 75 mg/kg), alone and in combination with l-arginine, l-arg, (100 mg/kg) and NG-l-arginine methyl ester, l-NAME (5 mg/kg), was evaluated using FST and TST. Following behavioral tests, the hippocampi were dissected out to measure nitrite levels. Results Findings suggested that administration of modafinil at doses of 50 and 75 mg/kg significantly reduced immobility time in the FST and TST. Furthermore, administration of l-arg and l-NAME increased and decreased, respectively, the immobility time in the FST and TST. We showed that co-administration of a sub-effective dose of modafinil (25 mg/kg) plus l-NAME potentiated the antidepressant-like effect of the sub-effective dose of modafinil. In addition, co-treatment of an effective dose of modafinil (75 mg/kg) with l-arg attenuated the antidepressant-like effect of the effective dose of modafinil. We showed that the antidepressant-like effect of modafinil is associated with decreased nitrite levels in the hippocampus. Conclusions Our findings for the first time support that the modulation of NO, partially at least, is involved in the antidepressant-like effect of modafinil in mouse FST and TST.

Funder

Shahrekord University of Medical Sciences

Publisher

Walter de Gruyter GmbH

Subject

Drug Discovery,Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3