Affiliation:
1. Department of Pharmaceutical Sciences , Faculty of Pharmacy, Airlangga University , Surabaya , Indonesia
2. Department of Pharmaceutics , Faculty of Pharmacy, University of Surabaya , Surabaya , Indonesia
Abstract
Abstract
Objectives
This study aims to develop coenzyme Q10 nanostructured lipid carriers (NLCs) using tristearin and stearyl alcohol as well as isopropyl palmitate (IPP) as solid and liquid lipid respectively for the dermal delivery system.
Methods
The coenzyme Q10 NLCs were optimized using tristearin, and stearyl alcohol in different concentrations and further characterized by dynamic light scattering (DLS) for particle size, polydispersity index (PDI), zeta potential, differential scanning calorimetry (DSC) and X-ray diffractometry for crystallinity behavior, Fourier transform infrared spectroscopy (FT-IR) for drug-lipid interaction, scanning electron microscopy (SEM) for particle shape, viscometer for viscosity, and pH meter for pH value. Furthermore, entrapment efficiency (EE), drug loading (DL), and skin penetration in vivo were also evaluated while molecular docking was conducted to examine the interaction between coenzyme Q10 and the lipids.
Results
The coenzyme Q10 NLCs with tristearin-IPP and stearyl alcohol-IPP as lipid matrix had <1,000 nm particle size, <0.3 PDI, less negative than −30 mV zeta potential, about 41% crystallinity index, and about six as the pH value. Moreover, the EE, DL, viscosity, and in vivo skin penetration of the NLCs using tristearin were higher compared to stearyl alcohol, however, the skin penetration depths for both NLCs were not significantly different. Furthermore, the in silico binding energy of coenzyme Q10-tristearin was lower compared to coenzyme Q10-stearyl alcohol. Both of them showed hydrophobic and van der Waals interaction.
Conclusions
The NLCs of coenzyme Q10 were formulated successfully using tristearin-IPP and stearyl alcohol-IPP for dermal delivery.
Subject
Drug Discovery,Pharmacology,General Medicine,Physiology