Effects of the gaseous signalling molecule nitroxyl (HNO) on myenteric neurons governing intestinal motility

Author:

Pouokam Ervice12ORCID

Affiliation:

1. Department of Human medicine , MSB Medical School Berlin , Berlin , Germany

2. Institute of Veterinary Physiology and Biochemistry , Justus-Liebig-University Giessen , Giessen , Germany

Abstract

Abstract Objectives The main function of myenteric neurons is the control of gut motility. As we recently showed that nitroxyl (HNO) induces intestinal smooth muscle relaxation, it was of interest to evaluate the effects of this signalling molecule on myenteric neurons in order to distinguish its properties in regard to myocytes. Methods Myenteric neurons isolated from the ileum of 4–10 days old rats were used. HNO-induced changes in intracellular concentration of Ca2+ or membrane potential and ion currents were measured using the Ca2+-sensitive fluorescent dye fura-2 AM or by electrophysiological whole-cell recordings, respectively. Changes in intracellular thiol groups pool were evaluated using thiol tracker violet. Angeli’s salt was used as HNO donor. Results The HNO donor Angeli’s salt induced a significant increase in the cytosolic Ca2+ concentration at the concentration 50 µM and a membrane hyperpolarization from a resting membrane potential of −56.1 ± 8.0 mV to −63.1 ± 8.7 mV (n=7). Although potassium channels primarily drive membrane potential changes in these cells, outwardly rectifying potassium currents were not significantly affected by 50 µM Angeli’s salt. Fast inward sodium currents were slightly but not significantly reduced by HNO. In more sensitive cells, HNO tended to reduce the pool of thiol groups. Conclusions As in the case of smooth muscle cells, HNO causes hyperpolarization of myenteric neurons, an effect also associated with an increase in intracellular Ca2+ concentration. Pathways other than activation of potassium currents appear to drive the hyperpolarization evoked by HNO.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Drug Discovery,Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3