Oxidative stress, histopathological and electron microscopic alterations induced by dimethylnitrosamine in renal male mice and the protective effect of α-lipoic acid

Author:

Hamza Reham Z.,Ismail Hayat A.A.,El-Shenawy Nahla S.

Abstract

AbstractBackground:Dimethylnitrosamine (DMN) is a waste product of several industrial processes. α-Lipoic acid (ALA) is a vitamin-like chemical also called as an antioxidant. Therefore, the study was designed to investigate the potential benefits of ALA in reducing the nephropathy of DMN in male mice.Methods:Animals were divided into 6 groups (n=8) and received their treatment for 4 weeks as follows: groups 1–4 served as control, ALA-treatment (16.12 mg/kg), DMN low dose treatment and DMN high dose treatment, respectively. Groups 5 and 6 received ALA before DMN low dose and DMN high dose, respectively. Superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase, total antioxidant capacity, nitric oxide, lipid peroxidation as well as the levels of uric acid and creatinine were determined. The histological and ultrastructure changes of renal tissue were also evaluated.Results:Treatment of the DMN mice with ALA showed a reduction in the levels of kidney nitric oxide, lipid peroxidation, as well as creatinine and uric acid levels as compared with the DMN group. The results show that ALA plays an important role in quenching the free radicals resulting from the metabolism of DMN, thereby inhibiting lipid peroxidation and protecting membrane lipids from oxidative damage and, in turn, preventing oxidative stress and apoptosis. Histopathological and ultrastructure analysis of renal tissue confirmed the oxidative stress results occurred in DMN renal mice. Concomitant administration of ALA with DMN significantly decreased all the histopathological changes induced by DMN.Conclusions:The present study elucidated the therapeutic effects of ALA administered in combination with DMN to minimize its renal toxicity.

Publisher

Walter de Gruyter GmbH

Subject

Drug Discovery,Pharmacology,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3