Does etodolac affect TRPA1 functionality in vivo in human?

Author:

Marynissen Heleen1ORCID,Mergaerts Delphine1,Bamps Dorien1,de Hoon Jan1

Affiliation:

1. Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences , KU Leuven , Leuven , Belgium

Abstract

Abstract Objectives In preclinical research, etodolac, a non-steroidal anti-inflammatory drug, affected transient receptor potential ankyrin 1 (TRPA1) activation. Yet, whether the in vitro interaction between etodolac and TRPA1 translates to altered TRPA1 functionality in vivo in human remains to be investigated. Methods A randomized, double-blinded, celecoxib-controlled study was conducted to assess the effect of etodolac on TRPA1-mediated dermal blood flow (DBF) changes on the forearm of 15 healthy, male volunteers aged between 18 and 45 years. Over four study visits, separated by at least five days wash-out, a single or four-fold dose of etodolac 200 mg or celecoxib 200 mg was administered orally. Two hours post-dose, TRPA1 functionality was evaluated by assessing cinnamaldehyde-induced DBF changes. DBF changes were quantified and expressed in Perfusion Units (PUs) using laser Doppler imaging during 60 min post-cinnamaldehyde application. The corresponding area under the curve (AUC0–60min) was calculated as summary measure. Statistical analysis was performed using Linear mixed models with post-hoc Dunnett. Results Neither the single dose of etodolac nor celecoxib inhibited the cinnamaldehyde-induced DBF changes compared to no treatment (AUC0–60min ± SEM of 17,751 ± 1,514 PUs*min and 17,532 ± 1,706 PUs*min vs. 19,274 ± 1,031 PUs*min, respectively, both p=1.00). Similarly, also a four-fold dose of both compounds failed to inhibit the cinnamaldehyde-induced DBF changes (19,235 ± 1,260 PUs*min and 19,367 ± 1,085 PUs*min vs. 19,274 ± 1,031 PUs*min, respectively, both p=1.00). Conclusions Etodolac did not affect the cinnamaldehyde-induced DBF changes, suggesting that it does not alter TRPA1 functionality in vivo in human.

Publisher

Walter de Gruyter GmbH

Subject

Drug Discovery,Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3