Affiliation:
1. Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University , Surabaya , Indonesia
2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University , Surabaya , Indonesia
Abstract
Abstract
Objectives
Histamine N-methyltransferase (HNMT) is an enzyme that plays a crucial role in the inactivation of histamine in central nervous system, kidneys and bronchi. Inhibition of HNMT is known to have a potential role in treating attention-deficit hyperactivity disorder, memory impairment, mental illness and neurodegenerative illnesses. Therefore, to find potential compounds that could be developed as novel HNMT inhibitors, this study conducted an in silico study of the secondary metabolites of Nigella sativa L and Curcuma xanthorrhiza Roxb.
Methods
In this study, we conducted a molecular docking study of 36 secondary metabolites of N. sativa L and 26 secondary metabolites of C. xanthorrhiza Roxb using an in silico approach targeting HNMT protein (PDB ID: 2AOT) using AutoDockVina software. The prediction of ADMET characteristics was done using the pkCSM Online Tool.
Results
This study obtained one metabolite from N. sativa L (longifolene) and seven metabolites from C. xanthorrhiza Roxb {(+)-beta-atlantone, humulene epoxide, (−)-beta-curcumene, (E)-caryophyllene, germacrone, (R)-(−)-xanthorrhizol, and (−)-beta-caryophyllene epoxide} which were predicted to have potential to be developed as HNMT inhibitors.
Conclusions
This study found several secondary metabolites of N. sativa L and C. xanthorrhiza Roxb which had activity as HNMT inhibitors. This research can likewise be utilized as a basis for further research, both in vitro, in vivo, and clinical trials related to the development of secondary metabolites from N. sativa L and C. xanthorrhiza Roxb as novel HNMT inhibitor compounds.
Subject
Drug Discovery,Pharmacology,General Medicine,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献