Fast and accurate electromagnetic field calculation for substrate-supported metasurfaces using the discrete dipole approximation

Author:

Liu Weilin1ORCID,McLeod Euan1ORCID

Affiliation:

1. Wyant College of Optical Sciences , University of Arizona , 1630 E University Blvd , Tucson , AZ 85719 , USA

Abstract

Abstract Metasurface design tends to be tedious and time-consuming based on sweeping geometric parameters. Common numerical simulation techniques are slow for large areas, ultra-fine grids, and/or three-dimensional simulations. Simulation time can be reduced by combining the principle of the discrete dipole approximation (DDA) with analytical solutions for light scattered by a dipole near a flat surface. The DDA has rarely been used in metasurface design, and comprehensive benchmarking comparisons are lacking. Here, we compare the accuracy and speed of three DDA methods—substrate discretization, two-dimensional Cartesian Green’s functions, and one-dimensional (1D) cylindrical Green’s functions—against the finite difference time domain (FDTD) method. We find that the 1D cylindrical approach performs best. For example, the s-polarized field scattered from a silica-substrate-supported 600 × 180 × 60 nm gold elliptic nanocylinder discretized into 642 dipoles is computed with 0.78 % pattern error and 6.54 % net power error within 294 s, which is 6 times faster than FDTD. Our 1D cylindrical approach takes advantage of parallel processing and also gives transmitted field solutions, which, to the best of our knowledge, is not found in existing tools. We also examine the differences among four polarizability models: Clausius–Mossotti, radiation reaction, lattice dispersion relation, and digitized Green’s function, finding that the radiation reaction dipole model performs best in terms of pattern error, while the digitized Green’s function has the lowest power error.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3