Highly efficient upconversion photodynamic performance of rare-earth-coupled dual-photosensitizers: ultrafast experiments and excited-state calculations

Author:

Yang Yubiao1,Zhang Lei1,Xiao Chao1,Huang Zhencheng1,Zhao Fuli1ORCID,Yin Jinchang2ORCID

Affiliation:

1. School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-Sen University , Guangzhou 510275 , China

2. School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China

Abstract

Abstract Upconversion photodynamic therapy (UC-PDT), which integrates upconversion nanoparticles (UCNPs) with photosensitizers (PSs), presents a promising advancement in the field of phototherapy. However, despite the extensive studies focused on the design and synthesis of UCNPs, there is a paucity of systematic research on the mechanisms underlying the synergistic upconversion photodynamic effects. Here we have synthesized upconversion core@dotted-shell nanoparticles (CDSNPs) and covalently tethered them with two distinct PSs, thereby constructing a dual-PS UC-PDT system with high synergistic photodynamic performance. To unravel the mechanism underlying the synergism, we employed a combination of quantum mechanical calculations and ultrafast time-resolved spectroscopy techniques. The results indicate that rare earth oxides play a pivotal role in enhancing the intersystem crossing processes of PSs through modulating their excited electronic states. Additionally, Förster resonance energy transfer between two distinct PSs contributes to the amplification of triplet state populations, thus further enhancing the photodynamic effect. In vitro experiments demonstrate that the prepared CDSNPs based dual-PS system exhibits excellent biocompatibility with normal cells and exceptional synergistic photodynamic efficacy against tumor cells upon near-infrared excitation. This research contributes theoretical insights into the design and application of multi-photosensitizer UC-PDT systems, laying the groundwork for more efficient preclinical implementations in the future.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3