The anisotropic broadband surface plasmon polariton and hot carrier properties of borophene monolayer

Author:

Jian Chaochao1,Ma Xiangchao1ORCID,Zhang Jianqi1,Jiang Jiali1

Affiliation:

1. School of Physics and Optoelectronic Engineering , Xidian University , Xi’an 710071 , China

Abstract

Abstract Borophene monolayer with its intrinsic metallic and anisotropic band structures exhibits extraordinary electronic, optical, and transport properties. Especially, the high density of Dirac electrons enables promising applications for building low-loss broadband SPP devices. However, a systematic characterization of the surface plasmon polariton (SPP) properties and hot carriers generated from the inevitable SPP decay in borophene has not been reported so far. Most importantly, the mechanism for SPP losses remains obscurely quantified. In this work, from a fully first-principles perspective, we explicitly evaluate the main loss effects of SPP in borophene, including the Drude resistance, phonon-assisted intraband and direct interband electronic transitions. With this knowledge, we further calculate the frequency- and polarization-dependent SPP response of borophene, and evaluate some typical application-dependent figure of merits of SPP. On the other hand, we evaluate the generation and transport properties of plasmon-driven hot carriers in borophene, involving energy- and momentum-dependent carrier lifetimes and mean free paths, which provide deeper insight toward the transport of hot carriers at the nanoscale. These results indicate that borophene has promising applications in next-generation low-loss optoelectronic devices and photocatalytic reactors.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3