Thermally tunable binary-phase VO2 metasurfaces for switchable holography and digital encryption

Author:

Liao Yuan1ORCID,Fan Yulong12ORCID,Lei Dangyuan1ORCID

Affiliation:

1. Department of Materials Science and Engineering , City University of Hong Kong , Kowloon , Hong Kong , China

2. State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering , Institute of Optics and Electronics, Chinese Academy of Sciences , Chengdu 610209 , China

Abstract

Abstract Metasurface holography has aroused immense interest in producing holographic images with high quality, higher-order diffraction-free, and large viewing angles by using a planar artificial sheet consisting of subwavelength nanostructures. Despite remarkable progress, dynamically tunable metasurface holography in the visible band has rarely been reported due to limited available tuning methods. In this work, we propose and numerically demonstrate a thermally tunable vanadium dioxide (VO2) nanofin based binary-phase metasurface, which generates holographic information in the visible varying with temperature. The insulator-to-metal phase transition in VO2 nanofins allows two independent binary-phase holograms generated by machine learning to be encoded in the respective phases of VO2 and switched under thermal regulation. By elaborately designing the dimensions and compensated phase of VO2 nanofins, high-quality images are reconstructed at corresponding temperatures under appropriate chiral illumination. In contrast, much poorer images are produced under inappropriate chiral illumination. We further demonstrate the advantage of applying the VO2 phase-compensated metasurface in high-security digital encryption, where two desired character combinations are read out with appropriate excitations and temperatures, whereas one identical fraudulent message is received with inappropriate excitations. Our design approach offers a new and efficient method to realize tunable metasurfaces, which is promisingly adopted in dynamic display, information encryption, optical anti-counterfeiting, etc.

Funder

Innovation and Technology Commission

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3