Strong coupling spontaneous emission interference near a graphene nanodisk

Author:

Thanopulos Ioannis1ORCID,Karanikolas Vasilios2ORCID,Paspalakis Emmanuel1ORCID

Affiliation:

1. Materials Science Department, School of Natural Sciences , 37795 University of Patras , Patras 26504 , Greece

2. Institut für Materialwissenschaft , Technische Universität Darmstadt , Otto-Berndt-Str. 3, 64287 Darmstadt , Germany

Abstract

Abstract In this work, we analyze the spontaneous emission dynamics of a V-type quantum emitter near a graphene nanodisk based on the combination of electromagnetic and quantum dynamical calculations. The presence of the graphene nanodisk gives strong anisotropy to the Purcell factors of the quantum emitter, leading to interference effects in spontaneous emission appearing as coupling between the emitter’s upper levels. This effect is further enhanced by the strong light–matter interaction of the quantum emitter with the modified electromagnetic mode continuum, which induces non-Markovian spontaneous emission dynamics. We have studied the population dynamics of the quantum emitter at a specific distance from the center of the graphene nanodisk for various free-space decay widths and different quantum emitter’s initial conditions and have shown weak coupling results appearing with Markovian decay dynamics, obtained for quantum emitters with small free-space decay widths, and population dynamics that exhibits distinctly non-Markovian features, such as prominent decaying Rabi oscillations in the population evolution of the quantum emitter’s excited states and energy exchange between them during the overall population decay into the photonic mode continuum for largest free-space decay widths. Also, for the largest value of the free-space decay width, we obtain significant population trapping effects in the excited states of the quantum emitter. Furthermore, we find that the population dynamics for specific light–matter interaction strength conditions between the quantum emitter and the graphene nanodisk depend distinctively on the initial state of the quantum emitter, whether it is a single state or a superposition state.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3