2D molybdenum carbide (Mo2C)/fluorine mica (FM) saturable absorber for passively mode-locked erbium-doped all-fiber laser

Author:

Liu Sicong1,Wang Yonggang12,Lv Ruidong1,Wang Jiang1,Wang Huizhong1,Wang Yun1,Duan Lina3

Affiliation:

1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China

2. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

3. School of Science, Xi’an Shiyou University, Xi’an 710065, China

Abstract

AbstractAs a new member of saturable absorber (SA), molybdenum carbide (Mo2C) has some excellent optical properties. Herein, we report a new type of Mo2C/fluorine mica (FM) SA device. Uniform and compact Mo2C films were deposited on the FM by magnetron sputtering method. In order to increase the laser damage threshold, an additional protective layer of silicon oxide was deposited on the Mo2C. The FM is a single-layer structure of 20 μm, and its high elasticity makes it not easy to fracture. The transmission rate of FM is as high as 90% at near infrared wavelength. FM has better heat dissipation and softening temperature than organic composite materials, so it can withstand higher laser power without being damaged. In this work, Mo2C/FM SA was cut into small pieces and inserted into erbium-doped fiber laser to achieve mode-locked operation. The pulse duration and average output power of the laser pulses were 313 fs and 64.74 mW, respectively. In addition, a 12th-order sub-picosecond harmonic mode-locking was generated. The maximum repetition rate was 321.6 MHz and the shortest pulse duration was 338 fs. The experimental results show that Mo2C/FM SA is a broadband nonlinear optical mode-locker with excellent performance.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3