Active metal–graphene hybrid terahertz surface plasmon polaritons

Author:

Feng Mingming1,Zhang Baoqing1,Ling Haotian1,Zhang Zihao1,Wang Yiming1,Wang Yilin1,Zhang Xijian1,Hua Pingrang2,Wang Qingpu1,Song Aimin3,Zhang Yifei1ORCID

Affiliation:

1. Shandong Technology Center of Nanodevices and Integration, School of Microelectronics , Shandong University , Jinan , Shandong , China

2. Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University , Tianjin , China

3. School of Electrical and Electronic Engineering, University of Manchester , Manchester, M13 9PL , United Kingdom

Abstract

Abstract Surface plasmon polaritons (SPPs) are propagating electromagnetic surface waves with local electric field enhancement and nondiffraction limit at optical frequencies. At terahertz (THz) frequencies, a metal line with periodic grooves can mimic the optical SPPs with the same high cut-off response, which is referred to as designer SPPs. Here, by replacing metal grooves with graphene sheets, a novel active metal–graphene hybrid SPP device achieves significant phase modulation. Theoretically, the dispersion curves of THz SPPs are determined by the dimensions and periodicity of the grooves. Changing the chemical potential of graphene sweeps the effective groove depth, which correspondingly shifts the SPP cut-off frequency and modulates the slow-wave phase. A prototype device is fabricated and characterized under varying bias applied for graphene. The experiment demonstrates that the cut-off frequency red shifts from 200 to 177 GHz, and the phase variation is as large as 112° at 195 GHz under a low bias from −0.5 to 0.5 V. Simultaneously, the SPP transmittance is modulated by a factor of more than 3 dB from 140 to 177 GHz due to the graphene absorption. The proposed structure reveals a novel approach to study the nonreciprocal and topological SPPs with active modulation in the THz range.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3