Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations

Author:

Xu Nannan1,Ma Pengfei2,Fu Shenggui3,Shang Xinxin1,Jiang Shouzhen1,Wang Shuyun1,Li Dengwang1,Zhang Huanian13ORCID

Affiliation:

1. Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics , Shandong Normal University , Jinan, Shandong 250358 , China

2. State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials , South China University of Technology , Guangzhou 510640 , China

3. School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255049 , China

Abstract

Abstract Two-dimensional layered monoelemental materials (Xenes) with excellent optoelectronic properties have various property-related applications, such as energy, biomedicine, and optoelectronic devices. Xenes also show excellent performance in acting as saturable absorbers (SAs) for obtaining ultrafast laser operations. Few-layer tellurene as a typical Xenens exhibits distinct optoelectronic properties and promising practical application potential, and its nonlinear optical absorption characteristics and related ultrafast modulation applications have been investigated preliminarily. However, tellurene-based SAs to demonstrate large-energy mode-locked operations, which have special applications in industrial and scientific research areas, are seldom studied. In this work, we focus on the preparation of tellurene-based SAs and explore its applications in demonstrating large-energy mode-locked operations [dissipative soliton (DS) and noise-like pulses (NLP)]. For DS operation, the maximum average output power, pulse width, and largest pulse energy are 23.61 mW, 5.87 ps, and 1.94 nJ, respectively. NLP operation with a recorded average output power of 106.6 mW and a pulse energy of 8.76 nJ is also generated, which shows significant enhancement in comparison to previously reported Xenes-based works. Our contribution reveals the great potential and capacity of tellurene-based SAs in obtaining large-energy pulse operations and further promotes the explorative investigation of Xenes-based optoelectronic devices.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3