Dispersion engineering of infrared epsilon-near-zero modes by strong coupling to optical cavities

Author:

Johns Ben1ORCID

Affiliation:

1. Department of Chemical Sciences , Indian Institute of Science Education and Research , Mohali , 140306 , India

Abstract

Abstract Epsilon-near-zero (ENZ) materials have recently emerged as a promising platform for infrared nanophotonics. A significant challenge in the design of ENZ-based optics is to control the dispersion of ENZ modes that otherwise have a flat profile near the ENZ frequency. Strong coupling with an optical cavity is a promising approach to ENZ dispersion engineering, which however has limitations due to the lack of tunability or nanofabrication demands of the cavity employed. Here, we theoretically and numerically show that much of the limitations of previous approaches can be overcome by strongly coupling the ENZ mode to an unpatterned Fabry–Perot cavity. We demonstrate this unprecedented ENZ dispersion control in coupled cavities by designing tunable infrared polarizers that can absorb s and reflect p-polarized components, or vice versa, for almost any oblique angle of incidence, i.e. omnidirectional polarizers. The feasibility of active control is also demonstrated using a phase change material within the cavity, which predicts dynamic switchability of polariton dispersions across multiple resonant levels at mid-infrared wavelengths. These results are expected to advance the current understanding of strongly coupled ENZ interactions and demonstrate their potential in tailoring dispersions for active and passive control of light.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3