Effective medium concept in temporal metamaterials

Author:

Pacheco-Peña Victor1,Engheta Nader2

Affiliation:

1. School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, UK

2. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

AbstractMetamaterials are mostly designed in the time-harmonic scenario where wave propagation can be spatially manipulated. Tailoring the electromagnetic response of media in time has also gained the attention of the scientific community in order to achieve further control on wave-matter interaction both in space and time. In the present work, a temporally effective medium concept in metamaterial is theoretically investigated as a mechanism to create a medium with a desired effective permittivity. Similar to spatially subwavelength multilayered metamaterials, the proposed “temporal multilayered”, or “multistepped” metamaterial, is designed by alternating in time the permittivity of the medium between two values. In so doing, the temporally periodic medium can be modeled as an effective metamaterial in time with an effective permittivity initiated by a step function. The analogy between the temporal multistepped and the spatial multilayered metamaterials is presented demonstrating the duality between both domains. The proposed temporal metamaterial is analytically and numerically evaluated showing an excellent agreement with the designed parameters. Moreover, it is shown how the effective permittivity can be arbitrarily tailored by changing the duty cycle of the periodic temporal metamaterial. This performance is also connected to the spatial multilayer scenario in terms of the filling fraction of the different materials used to create the multilayered structures.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference134 articles.

1. Time reversal of electromagnetic waves;Phys Rev Lett,2004

2. Digital metamaterials;Nat Mater,2014

3. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials;Opt Express,2013

4. Fresnel drag in space-time modulated metamaterials;Proc Natl Acad Sci,2019

5. Simultaneous negative phase and group velocity of light in a metamaterial;Science,2006

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3