Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect

Author:

Zhuang Pengyu12,Fu Hanyu12,Xu Ning12,Li Bo12,Xu Jun3,Zhou Lin12ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Key Laboratory of Intelligent Optical Sensing and Integration , Nanjing University , Nanjing, 210093 , China

2. Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing, 210093 , China

3. School of Electronics Science and Engineering, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials , Nanjing University , Nanjing, 210093 , China

Abstract

Abstract Interfacial solar vapor generation has revived the solar-thermal-based desalination due to its high conversion efficiency of solar energy. However, most solar evaporators reported so far suffer from severe salt-clogging problems during solar desalination, leading to performance degradation and structural instability. Here, we demonstrate a free-standing salt-rejecting reduced graphene oxide (rGO) membrane serving as an efficient, stable, and antisalt-fouling solar evaporator. The evaporation rate of the membrane reaches up to 1.27 kg m−2 h−1 (solar–thermal conversion efficiency ∼79%) under one sun, out of 3.5 wt% brine. More strikingly, due to the tailored narrow interlayer spacing, the rGO membrane can effectively reject ions, preventing salt accumulation even for high salinity brine (∼8 wt% concentration). With enabled salt-antifouling capability, flexibility, as well as stability, our rGO membrane serves as a promising solar evaporator for high salinity brine treatment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference37 articles.

1. O. Neumann, C. Feronti, A. D. Neumann, et al., “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, pp. 11677–11681, 2013.

2. H. Ghasemi, G. Ni, A. M. Marconnet, et al., “Solar steam generation by heat localization,” Nat. Commun., vol. 5, p. 4449, 2014.

3. H. Gong, X. Liu, G. Liu, Z. Lin, X. Yu, and L. Zhou, “Non-noble metal based broadband photothermal absorbers for cost effective interfacial solar thermal conversion,” Nanophotonics, vol. 1, 2020, (ahead-of-print).

4. Y. Guo, X. Zhou, F. Zhao, J. Bae, B. Rosenberger, and G. Yu, “Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination,” ACS Nano, vol. 13, pp. 7913–7919, 2019.

5. H. Liu, X. Yu, J. Li, N. Xu, L. Zhou, and J. Zhu, “Plasmonic nanostructures for advanced interfacial solarvapor generation,” Sci. Sin. Phys. Mech. Astronom., vol. 49, p. 124203, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3