Passive nonreciprocal transmission and optical bistability based on polarization-independent bound states in the continuum

Author:

Chen Shiwen1,Zeng Yixuan2,Li Zhongfu3,Mao Yu1,Dai Xiaoyu4,Xiang Yuanjiang1ORCID

Affiliation:

1. School of Physics and Electronics , Hunan University , Changsha 410082 , China

2. Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System , Shenzhen Graduate School, Harbin Institute of Technology , Shenzhen , 518055 P. R. China

3. College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China

4. School of Electronic Information and Electrical Engineering , Hunan University , Changsha 410003 , China

Abstract

Abstract Free-space nonreciprocal transmission is a crucial aspect of modern optics devices. The implementation of nonreciprocal optical devices through optical nonlinearity has been demonstrated. However, due to the weak nonlinearity of traditional materials, most self-biased nonreciprocal devices are heavily dependent on the high Q strong resonances. In general, these resonances are frequently polarization sensitive. In this work, we propose ultrathin optical metasurface embedding Kerr nonlinearities to achieve nonreciprocal transmission and optical bistability for free-space propagation based on symmetry-protected bound states in the continuum (BICs). Since the structure of the metasurface retains C symmetry, the symmetry-protected BIC is polarization-independent. It is also shown that the nonreciprocal intensity range could be largely tuned by the structure parameters. The demonstrated devices merge the field of nonreciprocity with ultrathin metasurface technologies making this design an exciting prospect for an optical switch, routing, and isolator with optimal performance.

Funder

Natural Science Foundation of Hunan Province

Chongqing Natural Science Foundation

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3