Nonlinear optical response of strain-mediated gallium arsenide microwire in the near-infrared region

Author:

Cui Xiangpeng1,Huo Wenjun1,Qiu Linlu1,Zhao Likang1,Wang Junjie1,Lou Fei1ORCID,Zhang Shuaiyi1,Khayrudinov Vladislav2,Tam Wing Yim31ORCID,Lipsanen Harri2,Yang He4,Wang Xia15

Affiliation:

1. Shandong Engineering Research Center of New Optoelectronic Information Technology and Devices, School of Mathematics and Physics, Qingdao University of Science & Technology , Qingdao 266061 , China

2. Department of Electronics and Nanoengineering , Aalto University , Espoo FI-00076 , Finland

3. Department of Physics and William Mong Institute of Nano Science and Technology , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China

4. School of Instrumentation and Optoelectronic Engineering, Beihang University , Beijing 100191 , China

5. School of Physics and Technology, University of Jinan , Jinan 250022 , China

Abstract

Abstract Gallium arsenide (GaAs) semiconductor wires have emerged as potent candidates for nonlinear optical devices, necessitating bandgap engineering for an expanded operational wavelength range. We report the successful growth of strain-mediated GaAs microwires (MWs) with an average diameter of 1.1 μm. The axial tensile strain in these wires, as measured by X-ray diffraction and Raman scattering, ranges from 1.61 % to 1.95 % and from 1.44 % to 2.03 %, respectively. This strain condition significantly reduces the bandgap of GaAs MWs compared to bulk GaAs, enabling a response wavelength extension up to 1.1 μm. Open aperture Z-scan measurements reveal a nonlinear absorption coefficient of −15.9 cm/MW and a third-order magnetic susceptibility of −2.8 × 10−8 esu at 800 nm for these MWs. I-scan measurements further show that the GaAs saturable absorber has a modulation depth of 7.9 % and a nonsaturation loss of 3.3 % at 1050 nm. In laser applications, GaAs MWs have been effectively used as saturable absorbers for achieving Q-switched and dual-wavelength synchronous mode-locking operations in Yb-bulk lasers. These results not only offer new insights into the use of large diameter semiconductor wires but also expand the potential for applications requiring bandgap tuning.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3