Ultraviolet second harmonic generation from Mie-resonant lithium niobate nanospheres

Author:

Wang Jiayi1,Liu Zhuojun1ORCID,Xiang Jin2ORCID,Chen Bo1,Wei Yuming1,Liu Wenjing3,Xu Yi4,Lan Sheng5,Liu Jin1

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics , Sun Yat-sen University , Guangzhou 510275 , China

2. Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, School of Optoelectronic Engineering , Chongqing University , Chongqing 400044 , China

3. State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics , Peking University , 100871 , Beijing , China

4. Department of Electronic Engineering, College of Information Science and Technology , Jinan University , Guangzhou 510630 , China

5. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China

Abstract

Abstract Lithium niobate (LN), as a nonlinear material with a large nonlinear susceptibility, has been widely employed in second harmonic generation (SHG) up to ultraviolet (UV) frequency range due to its broad low-absorption window. In nanophotonics, it is possible to harness the Mie resonances associated with the single dielectric particles to boost the nonlinear light–matter interactions. Here, we fabricate single Mie-resonant LN nanospheres on a SiO2 substrate via the femtosecond (fs) laser ablation technique. By exploiting the magnetic dipole (MD) Mie resonance, UV SHG from the LN nanosphere is significantly enhanced with a measured conversion efficiency of 4.45 × 10−8 under the excitation of an fs laser at 750 nm. The single LN nanospheres achieved in this work could serve as Mie resonators for building nonlinear nanophotonic devices such as frequency converters and quantum light sources, etc.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3