Affiliation:
1. 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract
AbstractDynamic rotation and deformation of human red blood cells (RBCs) are extremely important to investigate the survival and mechanical features of cells, which will be of great physiological and pathological significance. Here, we report an optical approach that is capable of both rotating and deforming RBCs with light from two tapered fiber probes (TFPs). With laser beams at the wavelength of 980 nm injected into the TFPs, a single RBC was rotated around different axes while single or multiple RBCs were stretched by adjusting the points of action and magnitude of the optical forces from the TFPs. The biological safety of the approach was also discussed by taking the laser power required into account.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献