Deep learning–based vortex decomposition and switching based on fiber vector eigenmodes

Author:

Hou Mengdie1,Xu Mengjun1,Xu Jiangtao1,Lu Jiafeng1ORCID,An Yi2,Huang Liangjin3,Zeng Xianglong1ORCID,Pang Fufei1ORCID,Li Jun2,Yi Lilin4

Affiliation:

1. The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication , Shanghai University , Shanghai 200444 , China

2. College of Advanced Interdisciplinary Studies, National University of Defense Technology , Changsha 410073 , China

3. Nanhu Laser Laboratory , College of Advanced Interdisciplinary Studies, National University of Defense Technology , Changsha 410073 , China

4. State Key Laboratory of Advanced Optical Communication Systems and Networks , Shanghai Jiao Tong University , Shanghai 200240 , China

Abstract

Abstract Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning–based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Higher Education Discipline Innovation Project

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3