Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves

Author:

Rudenko Anton1,Mauclair Cyril1,Garrelie Florence1,Stoian Razvan1,Colombier Jean-Philippe1

Affiliation:

1. University of Lyon, UJM-St-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023 Saint-Etienne, France

Abstract

AbstractUsing coupled electromagnetic and hydrodynamic calculations, we elucidate theoretically the topographic transition from a random metallic surface to a periodic sub-wavelength grating by ultrashort laser ablation. The origin of this transition lies in the successive selection of hybrid surface waves scattered by random nanoholes. Contrary to the common belief that surface plasmon polaritons play the dominant role in the process and define the grating periodicity, we show that both quasi-cylindrical and surface plasmon waves are involved, whereas the diversity in the resulting spacings λ/2–λ (λ is the laser wavelength) is the manifestation of a broad frequency overlap of these waves, controlled by their relative phase shifts with respect to the plasmonic counterparts. The topography evolution imposes the dominant contribution to the surface sub-wavelength pattern by selecting the appropriate wave character from plasmonic modes to evanescent cylindrical waves. With the radiation dose, the grating periodicity exhibits a pronounced blue shift due to reinforced dipole–dipole coupling between the nanoholes and surface curvatures in the laser-processed area. This allows the creation of regular patterns with tunable periodicity.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3