96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems

Author:

Zhao Weike1,Peng Yingying1,Cao Xiaoping23ORCID,Zhao Shi1,Liu Ruoran1,Wei Yihui1,Liu Dajian1ORCID,Yi Xiaolin1,Han Shangtong1,Wan Yuanjian23,Li Kang23ORCID,Wu Guangze23,Wang Jian23ORCID,Shi Yaocheng1ORCID,Dai Daoxin1ORCID

Affiliation:

1. State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China

2. Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China

3. Optics Valley Laboratory , Wuhan 430074 , Hubei , China

Abstract

Abstract The multi-dimensional multiplexing technology is very promising for further increasing the link capacity of optical interconnects. A 96-channel silicon-based on-chip reconfigurable optical add-drop multiplexer (ROADM) is proposed and demonstrated for the first time to satisfy the demands in hybrid mode/polarization/wavelengthdivision-multiplexing systems. The present ROADM consists of a six-channel mode/polarization de-multiplexer, a 6 × 16 array of microring-resonator (MRR)-based wavelength-selective switches, and a six-channel mode/polarization multiplexer. With such a ROADM, one can add/drop optical signals to/from any channels of the multimode bus waveguide arbitrarily. For the designed and fabricated ROADM chip, there are more than 1000 elements integrated monolithically, including 96 MRRs, 576 waveguide crossings, 192 grating couplers, 96 micro-heaters, 112 pads, six polarization-splitter-rotators (PSRs), four asymmetric adiabatic couplers and four asymmetric directional couplers. For any channel added/dropped with the fabricated ROADM, the on-chip excess loss is about 5–20 dB, the inter-mode crosstalk is <−12 dB, and the inter-wavelength crosstalk is <−24 dB. The system experiments are demonstrated by using 10-GBaud quadrature phase shift keying (QPSK) signals, showing that the observed optical signal noise ratio (OSNR) power penalties induced by the ROADM are less than 2 dB at a BER of 3.8 × 10−3.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3