On-chip trans-dimensional plasmonic router

Author:

Dong Shaohua12,Zhang Qing2ORCID,Cao Guangtao2,Ni Jincheng2,Shi Ting2,Li Shiqing3,Duan Jingwen3,Wang Jiafu4,Li Ying1,Sun Shulin3ORCID,Zhou Lei5,Hu Guangwei2,Qiu Cheng-Wei2

Affiliation:

1. SZU–NUS Collaborative Innovation Center for Optoelectronic Science & Technology , International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education , Institute of Microscale Optoelectronics , Shenzhen University , Shenzhen, 518060 , China

2. Department of Electrical and Computer Engineering , National University of Singapore , Kent Ridge , Singapore, 117583 , Singapore

3. Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing , Green Photonics and Department of Optical Science and Engineering , Fudan University , Shanghai, 200433 , PR China

4. Department of Basic Sciences , Airforce Engineering University , Xian, 710051 , PR China

5. State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) , Fudan University , Shanghai, 200433 , PR China

Abstract

Abstract Plasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.

Funder

A*STAR Pharos Program

National Research Foundation, Prime Minister's Office, Singapore

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3