MoS2-based Charge-trapping synaptic device with electrical and optical modulated conductance

Author:

Zhang Min12,Fan Zehui1,Jiang Xixi1,Zhu Hao1,Chen Lin1,Xia Yidong3,Yin Jiang3,Liu Xinke4,Sun Qingqing1,Zhang David Wei1

Affiliation:

1. State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China

2. School of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China

3. College of Engineering and Applied Science, Nanjing University, Nanjing, 210093, China

4. College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

AbstractThe synapse is one of the fundamental elements in human brain performing functions such as learning, memorizing, and visual processing. The implementation of synaptic devices to realize neuromorphic computing and sensing tasks is a key step to artificial intelligence, which, however, has been bottlenecked by the complex circuitry and device integration. We report a high-performance charge-trapping memory synaptic device based on two-dimensional (2D) MoS2 and high-k Ta2O5–TiO2 (TTO) composite to build efficient and reliable neuromorphic system, which can be modulated by both electrical and optical stimuli. Significant and essential synaptic behaviors including short-term plasticity, long-term potentiation, and long-term depression have been emulated. Such excellent synaptic behaviors originated from the good nonvolatile memory performance due to the high density of defect states in the engineered TTO composite. The 2D synaptic device also exhibits effective switching by incident light tuning, which further enables pattern recognition with accuracy rate reaching 100%. Such experimental demonstration paves a robust way toward a multitask neuromorphic system and opens up potential applications in future artificial intelligence and sensing technology.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3