Imaging-based optical barcoding for relative humidity sensing based on meta-tip

Author:

Liu Yin1,Li Xiaowei2,Chen Yufeng1,Geng Guangzhou3,Li Junjie3,Wang Yongtian1,Huang Lingling1ORCID

Affiliation:

1. Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics , Beijing Institute of Technology , Beijing 100081 , China

2. Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering , Beijing Institute of Technology , Beijing 100081 , China

3. Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China

Abstract

Abstract In a wide range of applications such as healthcare treatment, environmental monitoring, food processing and storage, and semiconductor chip manufacturing, relative humidity (RH) sensing is required. However, traditional fiber-optic humidity sensors face the challenges of miniaturization and indirectly obtaining humidity values. Here, we propose and demonstrate an optical barcode technique by cooperating with RH meta-tip, which can predict the humidity values directly. Such RH meta-tip is composed of fiber-optic sensor based on surface plasmon resonance (SPR) effect and graphene oxide film as humidity sensitizer. While SPR sensor is composed of multimode fiber (MMF) integrated with metallic metasurface. Dynamic time warping (DTW) algorithm is used to obtain the warp path distance (WPD) sequence between the measured reflection spectrum and the spectra of the precalibrated database. The distance sequence is transformed into a pseudo-color barcode, and the humidity value is corresponded to the lowest distance, which can be read by human eyes. The RH measurement depends on the collective changes of the reflection spectrum rather than tracking a single specific resonance peak/dip. This work can open up new doors to the development of a humidity sensor with direct RH recognition by human eyes.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3