Nonlinear photonics on integrated platforms

Author:

Geng Wenpu1ORCID,Fang Yuxi1ORCID,Wang Yingning1ORCID,Bao Changjing2,Liu Weiwei1,Pan Zhongqi3,Yue Yang4ORCID

Affiliation:

1. Institute of Modern Optics, Nankai University , Tianjin 300350 , China

2. Department of Electrical Engineering , University of Southern California , Los Angeles , CA 90089 , USA

3. Department of Electrical & Computer Engineering , University of Louisiana at Lafayette , Lafayette , LA 70504 , USA

4. School of Information and Communications Engineering , 12480 Xi’an Jiaotong University , Xi’an 710049 , China

Abstract

Abstract Nonlinear photonics has unveiled new avenues for applications in metrology, spectroscopy, and optical communications. Recently, there has been a surge of interest in integrated platforms, attributed to their fundamental benefits, including compatibility with complementary metal-oxide semiconductor (CMOS) processes, reduced power consumption, compactness, and cost-effectiveness. This paper provides a comprehensive review of the key nonlinear effects and material properties utilized in integrated platforms. It discusses the applications and significant achievements in supercontinuum generation, a key nonlinear phenomenon. Additionally, the evolution of chip-based optical frequency combs is reviewed, highlighting recent pivotal works across four main categories. The paper also examines the recent advances in on-chip switching, computing, signal processing, microwave generation, and quantum applications. Finally, it provides perspectives on the development and challenges of nonlinear photonics in integrated platforms, offering insights into future directions for this rapidly evolving field.

Funder

Key Technologies Research Development Program of Tianjin

Natural Science Foundation of Shaanxi Province

National Key Research and Development Program of China

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New frontiers in nonlinear nanophotonics;Nanophotonics;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3