All dielectric metasurface based diffractive neural networks for 1-bit adder

Author:

Liu Yufei1,Chen Weizhu1,Wang Xinke1,Zhang Yan1ORCID

Affiliation:

1. Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics , Capital Normal University , Beijing , 100048 , China

Abstract

Abstract Diffractive deep neural networks (D 2 NNs) have brought significant changes in many fields, motivating the development of diverse optical computing components. However, a crucial downside in the optical computing components is employing diffractive optical elements (DOEs) which were fabricated using commercial 3D printers. DOEs simultaneously suffer from the challenges posed by high-order diffraction and low spatial utilization since the size of individual neuron is comparable to the wavelength scale. Here, we present a design of D 2 NNs based on all-dielectric metasurfaces which substantially reduces the individual neuron size of net to scale significantly smaller than the wavelength. Metasurface-based optical computational elements can offer higher spatial neuron density while completely eliminate high-order diffraction. We numerically simulated an optical half-adder and experimentally verified it in the terahertz frequency. The optical half-adder employed a compact network with only two diffraction layers. Each layer has a size of 2 × 2 cm2 but integrated staggering 40,000 neurons. The metasurface-based D 2 NNs can further facilitate miniaturization and integration of all optical computing devices and will find applications in numerous fields such as terahertz 6G communication, photonics integrated circuits, and intelligent sensors.

Funder

National Natural Science Foundation of China

Sino-German Mobility Program of the Sino-German Center for Science Funding

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3