Single femtosecond laser pulse–induced valence state conversion in BaFCl: Sm3+ nanocrystals for low-threshold optical storage

Author:

Zheng Biao12,Deng Lianzhong1,Li Jie1,Yao Yunhua1,Qi Dalong1,Shen Yuecheng1,Sun Zhenrong1,Zhang Shian134ORCID

Affiliation:

1. State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science , 12655 East China Normal University , Shanghai 200241 , China

2. Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering , 12655 Minjiang University , Fuzhou 350108 , China

3. Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China

4. 12655 Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University , Shanghai 200241 , China

Abstract

Abstract Femtosecond laser-induced valence state conversion (VC) in solid materials has attracted significant research attention due to its potential application in ultra-high density optical storage, boasting advantages such as ultra-high recording speed, easy reading, and high signal-to-noise ratio. However, identifying appropriate materials and technological solutions conducive to efficient single-laser-shot recording remains a pivotal challenge for practical applications. In this work, we report single femtosecond laser pulse–induced VC in BaFCl: Sm3+ nanocrystals utilizing a 4F-configuration optical imaging system comprising two-dimensional scan galvo mirrors. For the first time, we experimentally reveal the luminescence mechanisms and channels of multiphoton absorption-induced Sm2+ ions under both single and multiple 800 nm fs laser pulses. Leveraging the highly efficient single femtosecond laser pulse induced VC, we demonstrate a prototype optical storage experiment by sweeping the recording laser pulse. Remarkably, a threshold pulse energy as low as ∼100 nJ for effective single-laser-shot recording in BaFCl: Sm3+ nanocrystals is obtained under the current experimental conditions. Our investigations offer profound insights into the physical mechanisms underlying femtosecond laser induced VC in solid materials, thereby promoting the prospects of VC based optical storage toward practical applications.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3