Recent progress in terahertz metamaterial modulators

Author:

Degl’Innocenti Riccardo1ORCID,Lin Hungyen1,Navarro-Cía Miguel23ORCID

Affiliation:

1. Department of Engineering , University of Lancaster , Bailrigigg , Lancaster LA1 4YW , UK

2. School of Physics and Astronomy , University of Birmingham , B15 2TT Birmingham , UK

3. Department of Electronic, Electrical and Systems Engineering , University of Birmingham , Birmingham B15 2TT , UK

Abstract

Abstract The terahertz (0.1–10 THz) range represents a fast-evolving research and industrial field. The great interest for this portion of the electromagnetic spectrum, which lies between the photonics and the electronics ranges, stems from the unique and disruptive sectors where this radiation finds applications in, such as spectroscopy, quantum electronics, sensing and wireless communications beyond 5G. Engineering the propagation of terahertz light has always proved to be an intrinsically difficult task and for a long time it has been the bottleneck hindering the full exploitation of the terahertz spectrum. Amongst the different approaches that have been proposed so far for terahertz signal manipulation, the implementation of metamaterials has proved to be the most successful one, owing to the relative ease of realisation, high efficiency and spectral versatility. In this review, we present the latest developments in terahertz modulators based on metamaterials, while highlighting a few selected key applications in sensing, wireless communications and quantum electronics, which have particularly benefitted from these developments.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Horizon 2020 Framework Programme

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3