A scalable and durable polydimethylsiloxane-coated nanoporous polyethylene textile for daytime radiative cooling

Author:

Wang Tong1,Wu Xinyu12,Zhu Qian1,Chen Yinggang12,Zhang Shuqi12,Gu Min1ORCID,Zhang Yinan1

Affiliation:

1. Institute of Photonic Chips, University of Shanghai for Science and Technology , Shanghai 200093 , China

2. Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology , Shanghai 200093 , China

Abstract

Abstract Radiative cooling technology with zero-energy consumption and zero-carbon emission has drawn enormous attention. However, the high-cost manufacture, limited scalability, and narrow application scopes remain major impediments to radiative cooling commercialization. Here, we present a bilayer PDMS/nanoPE fabricated by an automatic film applicator for high-performance passive daytime radiative cooling. The nanoPE underlayer maximizes the reflection of sunlight and the transparent PDMS top-layer dramatically enhances the infrared emissivity of pristine nanoPE across the atmospheric transparency window (∆E 8–13 μm = 0.85). The obtained PDMS/nanoPE simultaneously allows a high solar reflectance of 0.94 and a thermal emittance of 0.94, enabling a sub-ambient cooling of 4.5 °C with a maximum of 7.6 °C in rooftop test and a theoretical net cooling power of 65 W/m2. A distinct temperature reduction of more than 10 °C can be achieved in comparison with pristine PDMS film. Integration of the hydrophobicity, durability, robust mechanical strength, and industrial scalability, we believe this work will provide practical and efficient solutions to cooling vehicles, buildings, and the human body in a simple and low-cost manner.

Funder

Shanghai Pujiang Program

Shanghai Yangfan Program

National Natural Science Foundation of China

Shanghai Science and Technology Program

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3