Affiliation:
1. 1State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433, China
2. 2Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Abstract
AbstractA short overview is presented on the research works related to the zero- gap, which appears as the volume-averaged refraction index vanishes in photonic structures containing both positive and negative-index materials. After introducing the basic concept of the zero- gap based on both rigorous mathematics and numerical simulations, the unique properties of such a band gap are discussed, including its robustness against weak disorder, wide-incidence-angle operation and scaling invariance, which do not belong to a conventional Bragg gap. We then describe the simulation and experimental verifications on the zero- gap and its extraordinary properties in different frequency domains. After that, the unusual photonic and physical effects discovered based on the zero- gap and their potential applications are reviewed, including beam manipulations and nonlinear effects. Before concluding this review, several interesting ideas inspired from the zero- gap works will be introduced, including the zero-phase gaps, zero-permittivity and zero-permeability gaps, complete band gaps, and zero-refraction-index materials with Dirac-Cone dispersion.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献