On-chip scalable mode-selective converter based on asymmetrical micro-racetrack resonators

Author:

Xiao Huifu1,Zhang Zhenfu2,Yang Junbo2,Han Xu1,Chen Wenping1,Ren Guanghui3,Mitchell Arnan13,Yang Jianhong14,Gao Daqiang4,Tian Yonghui5

Affiliation:

1. Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, PR China

2. Center of Material Science, National University of Defense Technology, Changsha, 410073, PR China

3. School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia

4. Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, PR China

5. Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, 730000, Lanzhou, Gansu, PR China

Abstract

AbstractMode division multiplexing (MDM) technology has been well known to researchers for its ability to increase the link capacity of photonic network. While various mode processing devices were demonstrated in recent years, the reconfigurability of multi-mode processing devices, which is vital for large-scale multi-functional networks, is rarely developed. In this paper, we first propose and experimentally demonstrate a scalable mode-selective converter using asymmetrical micro-racetrack resonators (MRRs) for optical network-on-chip. The proposed device, composed of cascaded MRRs, is able to convert the input monochromatic light to an arbitrary supported mode in the output waveguide as required. Thermo-optical effect of silicon waveguides is adopted to tune the working states of the device. To test the utility, a device for proof-of-concept is fabricated and experimentally demonstrated based on silicon-on-insulator substrate. The measured spectra of the device show that the extinction ratios of MRRs are larger than 18 dB, and modal crosstalk for selected modes are all less than −16.5 dB. The switching time of the fabricated device is in the level of about 40 μs. The proposed device is believed to have potential applications in multi-functional and intelligent network-on-chip, especially in reconfigurable MDM networks.

Funder

State Key Laboratory on Integrated Optoelectronics

Fundamental Research Funds for the Central Universities

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference68 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3