Fabrication of 1 × N integrated power splitters with arbitrary power ratio for single and multimode photonics

Author:

Haines Jack1ORCID,Vitali Valerio12,Bottrill Kyle1,Naik Pooja Uday1ORCID,Gandolfi Marco345ORCID,De Angelis Costantino345ORCID,Franz Yohann1,Lacava Cosimo2ORCID,Petropoulos Periklis1,Guasoni Massimiliano1ORCID

Affiliation:

1. Optoelectronics Research Centre , University of Southampton , Southampton , England

2. Department of Electrical, Computer and Biomedical Engineering , University of Pavia , Pavia , Italy

3. Department of Information Engineering , University of Brescia , Brescia , Italy

4. Istituto Nazionale di Ottica – Consiglio Nazionale delle Ricerche , Via Branze 45 , Brescia , 25123 , Italy

5. Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT) , Viale G.P. Usberti 181/A, 43124 Parma , Italy

Abstract

Abstract Compact power splitters are essential components in integrated optics. While 1 × 2 power splitters with uniform splitting are widely used, a 1 × N splitter with arbitrary number N of ports and arbitrary splitting ratio is yet to be demonstrated. In this work we address this problem. We fabricate and characterise 1 × N integrated power splitters that provide fully arbitrary splitting ratios. The core of our design is represented by an array of N non-equally spaced waveguides fabricated on a silicon nitride-on-insulator wafer. Any arbitrary 1 × N splitting ratio can be achieved by properly setting the array length and the dimension of the (N–1) nano-gaps between the adjacent waveguides. Most importantly, at variance with state-of-the-art solutions, our devices can be designed for arbitrary splitting of higher-order modes. In this manuscript we provide the first experimental demonstration of 1 × N arbitrary splitting ratio for both the fundamental modes (TE00 and TM00) and the TE01 mode, here up to N = 5 ports. With a footprint of 20 μm2/port, a bandwidth up to 70 nm and an excess losses <0.2 dB, our devices set a new benchmark for optical power splitters in both standard single-mode photonics as well as in the emerging integrated multimode photonics technology, and may therefore boost key photonic applications, from optimal power distribution and equalization up to signal processing operations.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3