Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk gallium to two-dimensional (2D) gallenene

Author:

Gutiérrez Yael1,García-Fernández Pablo2,Junquera Javier2,Brown April S.3,Moreno Fernando4,Losurdo Maria1

Affiliation:

1. Institute of Nanotechnology, CNR-NANOTEC, via Orabona 4, 70126Bari, Italy

2. Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain

3. Department of Electrical and Computer Engineering, Duke University, 27708Durham, NC, USA

4. Departamento de Física Aplicada, Universidad de Cantabria, Avda. de los Castros s/n, 39005Santander, Spain

Abstract

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.

Funder

Ministerio de Ciencia e Innovación

European Commission

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference172 articles.

1. Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications;Opt. Lett.,2012

2. Structure cristalline du gallium β;Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.,1969

3. Enhanced stability of single-layer w-gallenene through hydrogenation;J. Phys. Chem. C,2018

4. The SIESTA method for ab initio order-N materials simulation;J. Phys. Condens. Matter.,2002

5. Vanadium dioxide: the multistimuli responsive material and its applications;Small,2018

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3