Photonic spin Hall effect on the surfaces of type-I and type-II Weyl semimetals

Author:

Jia Guang Yi12,Huang Zhen Xian1,Ma Qiao Yun1,Li Geng2

Affiliation:

1. School of Science, Tianjin University of Commerce, Tianjin 300134, P.R. China

2. Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, USA

Abstract

AbstractTopological optics is an emerging research area in which various topological and geometrical ideas are being proposed to design and manipulate the behaviors of photons. Here, the photonic spin Hall effect on the surfaces of topological Weyl semimetal (WSM) films was studied. Our results show that the spin-dependent splitting (i.e. photonic spin Hall shifts) induced by the spin-orbit interaction is little sensitive to the tilt αt of Weyl nodes and the chemical potential μ in type-I WSM film. In contrast, photonic spin Hall shifts in both the in-plane and transverse directions present versatile dependent behaviors on the αt and μ in type-II WSM film. In particular, the largest in-plane and transverse spin Hall shifts appear at the tilts between −2 and −3, which are ~40 and ~10 times of the incident wavelength, respectively. Nevertheless, the largest spin Hall shifts for type-II WSM film with positive αt are only several times of incident wavelength. Moreover, the photonic spin Hall shifts also exhibit different variation trends with decreasing the chemical potential for different signs of αt in type-II WSM films. This dependence of photonic spin Hall shifts on tilt orientation in type-II WSM films has been explained by time-reversal-symmetry-breaking Hall conductivities in WSMs.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3