Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells

Author:

Zhang Chiben12,Xue Tingjia3,Zhang Jin1,Liu Longhai45,Xie Jianhua4,Wang Guangming2,Yao Jianquan5,Zhu Weiren1ORCID,Ye Xiaodan36

Affiliation:

1. Department of Electronic Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China

2. Air and Missile Defense College , Air Force Engineering University , Xi’an , China

3. Department of Radiology , Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai 200030 , China

4. Advantest (China) Co., Ltd , Shanghai 201203 , China

5. College of Precision Instruments and Opto-Electronics Engineering , Institute of Laser and Optoelectronics, Tianjin University , Tianjin 300072 , China

6. Department of Radiology , Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University , 180 Fenglin Road , Shanghai 200032 , China

Abstract

Abstract Lung cancer is the most frequently life-threatening disease and the prominent cause of cancer-related mortality among human beings worldwide, where poor early diagnosis and expensive detection costs are considered as significant reasons. Here, we try to tackle this issue by proposing a novel label-free and low-cost strategy for rapid detection and distinction of lung cancer cells relying on plasmonic toroidal metasurfaces at terahertz frequencies. Three disjoint regions are displayed in identifiable intensity-frequency diagram, which could directly help doctors determine the type of lung cancer cells for clinical treatment. The metasurface is generated by two mirrored gold split ring resonators with subwavelength sizes. When placing analytes on the metasurface, apparent shifts of both the resonance frequency and the resonance depth can be observed in the terahertz transmission spectra. The theoretical sensitivity of the biosensor over the reflective index reaches as high as 485.3 GHz/RIU. Moreover, the proposed metasurface shows high angular stability for oblique incident angle from 0 to 30°, where the maximum resonance frequency shift is less than 0.66% and the maximum transmittance variation keeps below 1.33%. To experimentally verify the sensing strategy, three types of non-small cell lung cancer cells (Calu-1, A427, and 95D) are cultured with different concentrations and their terahertz transmission spectra are measured with the proposed metasurface biosensor. The two-dimensional fingerprint diagram considering both the frequency and transmittance variations of the toroidal resonance dip is obtained, where the curves for different cells are completely separated with each other. This implies that we can directly distinguish the type of the analyte cells and its concentration by only single spectral measurement. We envisage that the proposed strategy has potential for clinical diagnosis and significantly expands the capabilities of plasmonic metamaterials in biological detection.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3