Artificial optoelectronic spiking neuron based on a resonant tunnelling diode coupled to a vertical cavity surface emitting laser

Author:

Hejda Matěj1ORCID,Malysheva Ekaterina2,Owen-Newns Dafydd1,Ali Al-Taai Qusay Raghib3,Zhang Weikang1,Ortega-Piwonka Ignacio4,Javaloyes Julien4,Wasige Edward3,Dolores-Calzadilla Victor2,Figueiredo José M. L.5,Romeira Bruno6ORCID,Hurtado Antonio1

Affiliation:

1. SUPA Department of Physics , Institute of Photonics, University of Strathclyde , Glasgow , UK

2. Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology , Eindhoven , The Netherlands

3. High Frequency Electronics Group , University of Glasgow , Glasgow , UK

4. Dept de Física and IAC-3 , Universitat de les Illes Balears , Palma de Mallorca , Spain

5. Centra-Ciências and Departamento de Física, Faculdade de Ciências , Universidade de Lisboa , Lisboa , Portugal

6. INL – International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics Group , Braga , Portugal

Abstract

Abstract Excitable optoelectronic devices represent one of the key building blocks for implementation of artificial spiking neurons in neuromorphic (brain-inspired) photonic systems. This work introduces and experimentally investigates an opto-electro-optical (O/E/O) artificial neuron built with a resonant tunnelling diode (RTD) coupled to a photodetector as a receiver and a vertical cavity surface emitting laser as a transmitter. We demonstrate a well-defined excitability threshold, above which the neuron produces optical spiking responses with characteristic neural-like refractory period. We utilise its fan-in capability to perform in-device coincidence detection (logical AND) and exclusive logical OR (XOR) tasks. These results provide first experimental validation of deterministic triggering and tasks in an RTD-based spiking optoelectronic neuron with both input and output optical (I/O) terminals. Furthermore, we also investigate in simulation the prospects of the proposed system for nanophotonic implementation in a monolithic design combining a nanoscale RTD element and a nanolaser; therefore demonstrating the potential of integrated RTD-based excitable nodes for low footprint, high-speed optoelectronic spiking neurons in future neuromorphic photonic hardware.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference58 articles.

1. A. Ramesh, M. Pavlov, G. Goh, et al.., “Zero-shot text-to-image generation,” arXiv: 2102.12092 [cs], 2021.

2. J. Jumper, R. Evans, A. Pritzel, et al.., “Highly accurate protein structure prediction with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021. https://doi.org/10.1038/s41586-021-03819-2.

3. T. B. Brown, B. Mann, N. Ryder, et al.., Language Models Are Few-Shot Learners, 2020. https://arxiv.org/abs/2005.14165.

4. A. Neckar, S. Fok, B. V. Benjamin, et al.., “Braindrop: a mixed-signal neuromorphic architecture with a dynamical systems-based programming model,” Proc. IEEE, vol. 107, no. 1, pp. 144–164, 2019. https://doi.org/10.1109/JPROC.2018.2881432.

5. S. Höppner, Y. Yan, A. Dixius, et al.., The SpiNNaker 2 Processing Element Architecture for Hybrid Digital Neuromorphic Computing, 2021.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3