Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more

Author:

Li Zile12,Yu Shaohua3,Zheng Guoxing1ORCID

Affiliation:

1. Electronic Information School , Wuhan University , Wuhan 430072 , China

2. Suzhou Institute of Wuhan University , Suzhou 215123 , China

3. NOEIC, State Key Laboratory of Optical Communication Technologies and Networks , Wuhan Research Institute of Posts & Telecommunications , Wuhan 430074 , China

Abstract

Abstract The unusual electromagnetic responses of nanostructured metasurfaces endow them with an ability to manipulate the four fundamental properties (amplitude, phase, polarization, and frequency) of lightwave at the subwavelength scale. Based on this, in the past several years, a lot of innovative optical elements and devices, such as metagratings, metalens, metaholograms, printings, vortex beam generators, or even their combinations, have been proposed, which have greatly empowered the advanced research and applications of metasurfaces in many fields. Behind these achievements are scientists’ continuous exploration of new physics and degrees of freedom in nanostructured metasurface design. This review will focus on the progress on the design of different nanostructured metasurfaces for lightwave manipulation, including by varying/fixing the dimensions and/or orientations of isotropic/anisotropic nanostructures, which can therefore provide various functionalities for different applications. Exploiting the design degrees of freedom of optical metasurfaces provides great flexibility in the design of multifunctional and multiplexing devices, which can be applied in anticounterfeiting, information encoding and hiding, high-density optical storage, multichannel imaging and displays, sensing, optical communications, and many other related fields.

Funder

National Natural Science Foundation of China

Postdoctoral Innovation Talent Support Program of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3