Affiliation:
1. Central European Institute of Technology, Brno University of Technology , Purkyňova 123, 612 00 Brno , Czech Republic
2. Institute of Physical Engineering, Brno University of Technology , Technická 2, 616 69 Brno , Czech Republic
Abstract
Abstract
Electron energy loss spectroscopy (EELS) is often utilized to characterize localized surface plasmon modes supported by plasmonic antennas. However, the spectral resolution of this technique is only mediocre, and it can be rather difficult to resolve modes close in the energy, such as coupled modes of dimer antennas. Here, we address this issue for a case study of the dimer plasmonic antenna composed of two gold discs. We analyze four nearly degenerate coupled plasmon modes of the dimer: longitudinal and transverse bonding and antibonding dipole modes. With a traditional approach, which takes into account the spectral response of the antennas recorded at specific points, the modes cannot be experimentally identified with EELS. Therefore, we employ the spectral and spatial sensitivity of EELS simultaneously. We propose several metrics that can be utilized to resolve the modes. First, we utilize electrodynamic simulations to verify that the metrics indeed represent the spectral positions of the plasmon modes. Next, we apply the metrics to experimental data, demonstrating their ability to resolve three of the above-mentioned modes (with transverse bonding and antibonding modes still unresolved), identify them unequivocally, and determine their energies. In this respect, the spatio-spectral metrics increase the information extracted from electron energy loss spectroscopy applied to plasmonic antennas.
Funder
Grantová Agentura České Republiky
Ministerstvo Školství, Mládeže a Tělovýchovy
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献