Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface

Author:

Zhang Ming1,Zhang Fei1,Ou Yi1,Cai Jixiang1,Yu Honglin1

Affiliation:

1. Key Laboratory of Opto-electronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China

Abstract

AbstractTerahertz (THz) absorbers have attracted considerable attention due to their potential applications in high-resolution imaging systems, sensing, and imaging. However, the limited bandwidth of THz absorbers limits their further applications. Recently, the dispersion management of metasurfaces has become a simple strategy for the bandwidth extension of THz devices. In this paper, we used the capability of dispersion management to extend the bandwidth of THz absorbers. As a proof-of-concept, a dual metasurface-based reflective device was proposed for broadband near-unity THz absorber, which was composed of two polarization-independent metasurfaces separated from a metallic ground by dielectric layers with different thickness. Benefiting from the fully released dispersion management ability in adjusting the dimensions of the metasurfaces, we obtained an absorbance above 90% in the frequency range from 0.52 to 4.4 THz and the total thickness for the bandwidth approaching the theoretical Rozanov limit. The experimental results verified the ability of dispersion management in designing broadband absorbers and the performance of the designed absorber. The underlying physical mechanism of dispersion management was interpreted in the general equivalent circuit theory and transmission line model. In addition, the catenary optical model was used to further interpret the physics behind this dual metasurface. Moreover, we found that the alignment deviations between the dual metasurface had little impact on the performance of the designed absorber, which indicates that the dual-metasurface does not require center alignment and is easy to be fabricated. The results of this work could broaden the application areas of THz absorbers.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3