High-Q nanophotonics: sculpting wavefronts with slow light

Author:

Barton David1,Hu Jack1,Dixon Jefferson12,Klopfer Elissa1,Dagli Sahil1,Lawrence Mark1,Dionne Jennifer13

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA

2. Department of Mechanical Engineering, Stanford University,Stanford, CA94305, USA

3. Department of Radiology, Stanford University, Stanford, CA94305, USA

Abstract

AbstractDensely interconnected, nonlinear, and reconfigurable optical networks represent a route to high-performance optical computing, communications, and sensing technologies. Dielectric nanoantennas are promising building blocks for such architectures since they can precisely control optical diffraction. However, they are traditionally limited in their nonlinear and reconfigurable responses owing to their relatively low-quality factor (Q-factor). Here, we highlight new and emerging design strategies to increase the Q-factor while maintaining control of optical diffraction, enabling unprecedented spatial and temporal control of light. We describe how multipolar modes and bound states in the continuum increase Q and show how these high-Q nanoantennas can be cascaded to create almost limitless resonant optical transfer functions. With high-Q nanoantennas, new paradigms in reconfigurable wavefront-shaping, low-noise, multiplexed biosensors and quantum transduction are possible.

Funder

Air Force Office of Scientific Research

Gordon and Betty Moore Foundation

Eastman Kodak

Moore Foundation

National Science Foundation

U.S. Department of Defense

National Defense Science and Engineering Graduate

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference140 articles.

1. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase;Light Sci. Appl.

2. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures;J. Appl. Phys.,2005

3. Bound states in the continuum;Nat. Rev. Mater.

4. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces;Nat. Commun.,2019

5. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers;Nanoscale,2018

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3