Graphene-based plasmonic metamaterial for terahertz laser transistors

Author:

Otsuji Taiichi1ORCID,Boubanga-Tombet Stephane Albon1,Satou Akira1,Yadav Deepika1,Fukidome Hirokazu1,Watanabe Takayuki1,Suemitsu Tetsuya2,Dubinov Alexander A.3,Popov Vyacheslav V.4,Knap Wojciech156,Kachorovskii Valentin7,Narahara Koichi8,Ryzhii Maxim9,Mitin Vladimir10,Shur Michael S.11,Ryzhii Victor112

Affiliation:

1. Research Institute of Electrical Communication , Tohoku University , Sendai 9808577 , Japan

2. Center for Innovative Integrated Electronic Systems , Tohoku University , Sendai 9808572 , Japan

3. Institute for Physics of Microstructures , Russian Academy of Sciences, Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod 603950 , Russia

4. Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch) , Russian Academy of Sciences , Saratov 410019 , Russia

5. CENTERA Laboratories , Institute of High Pressure Physics , Warsaw PAS 01142 , Poland

6. Laboratory Charles Coulomb , University of Montpellier and CNRS , Montpellier F-34095 , France

7. Ioffe Institute , St. Petersburg 194021 , Russia

8. Department of Electrical and Electronic Engineering , Kanagawa Institute of Technology , Atsugi , Kanagawa 243-0292 , Japan

9. Department of Computer Science and Engineering , University of Aizu , Aizu-Wakamatsu 965-8580 , Japan

10. Department of Electrical Engineering , University at Buffalo, SUNY , Buffalo , NY 14260 , USA

11. Department of Electrical, Computer, and Systems Engineering , Rensselaer Polytechnic Institute , Troy , NY 12180 , USA

12. Mokerov Institute of Ultra-High Frequency Semiconductor Electronics, RAS, Moscow 117105 , Russia

Abstract

Abstract This paper reviews recent advances in the research and development of graphene-based plasmonic metamaterials for terahertz (THz) laser transistors. The authors’ theoretical discovery on THz laser transistors in 2007 was realized as a distributed-feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) in 2018, demonstrating ∼0.1 µW single-mode emission at 5.2 THz and ∼80 µW amplified spontaneous 1–7.6 THz emission at 100 K. To realize room-temperature, dry-cell-battery operating intense THz lasing with fast direct modulation, various approaches based on graphene plasmonic metamaterials are investigated and introduced as real device implementations, including (i) replacement of the laser photonic cavity with plasmonic cavity enormously improving the THz photon field confinement with larger gain overlapping, (ii) introduction of THz amplification of stimulated emission via current-driven graphene Dirac plasmons (GDPs), and (iii) controlling the parity and time-reversal symmetry of GDPs enabling ultrafast direct gain-switch modulation. Possible real device structures and design constraints are discussed and addressed toward coherent light sources applicable to future 6G- and 7G-class THz wireless communication systems.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3