Scattering asymmetry and circular dichroism in coupled PT-symmetric chiral nanoparticles

Author:

Chen Xiaolin12,Wang Hongfei13,Li Jensen4,Wong Kwok-yin1,Lei Dangyuan3ORCID

Affiliation:

1. State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong 999077 , China

2. Department of Optical Engineering, School of Physics , Hefei University of Technology , Feicui Road 420 , Hefei 230601 , China

3. Department of Materials Science and Engineering , City University of Hong Kong , Hong Kong 999077 , China

4. Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China

Abstract

Abstract We investigate the scattering properties of coupled parity-time (PT) symmetric chiral nanospheres with scattering matrix formalism. The exceptional points, i.e., spectral singularities at which the eigenvalues and eigenvectors simultaneously coalesce in the parameter space, of scattering matrix can be tailored by the chirality of the nanospheres. We also calculate the scattering, absorption and extinction cross sections of the PT-symmetric chiral scatter under illumination by monochromatic left- and right-circularly polarized plane waves. We find that the scattering cross section of the nanostructures exhibits an asymmetry when the plane waves are incident from the loss and gain regions, respectively, especially in the broken phase, and the optical cross section exhibits circular dichroism, i.e., differential extinction when the PT-symmetric scatter is endowed with chirality. In particular, under illumination by linearly polarized monochromatic plane waves without intrinsic chirality, the ellipticity of scattered fields in the forward direction, denoting the chirality of light, becomes larger when the scatter is in the PT-symmetry-broken phase. Our findings demonstrate that the gain and loss can control the optical chirality and enhance the chiroptical interactions and pave the way for studying the resonant chiral light–matter interactions in non-Hermitian photonics.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3