Energy scavenging from the diurnal cycle with a temperature-doubler circuit and a self-adaptive photonic design

Author:

Zhang Zheng1,Zhao Xiaodong1,Chen Zhen1ORCID

Affiliation:

1. Jiangsu Key Laboratory for Design & Manufacture or Micro/Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 210096 , China

Abstract

Abstract A temperature-doubler circuit is the functional equivalent of a voltage-doubler in the thermal domain. Effective temperature-doubler circuits could benefit energy scavenging from fluctuating thermal resources, e.g. the diurnal cycle. However, the current paradigm relies on static photonic designs of the selective solar absorber or blackbody emitter, which aims at maximizing energy harvesting from either the sun or outer space, but not from both. Furthermore, photonic and thermal optimizations have not yet been coupled to maximize the power output. Here we develop a general framework to optimize the energy acquisition and conversion simultaneously to maximize a temperature-doubler’s power output under a realistic solar-thermal boundary condition. With an ideal self-adaptive absorber/emitter to fully exploit the thermodynamic potential of both the sun and outer space, the theoretical limit of the temperature-doubler circuit’s average output power in a diurnal cycle is found to be 168 W m−2, a 12-fold enhancement as compared to the blackbody emitter. We provide a numerical design of such a self-adaptive absorber/emitter, which, combined with a thermoelectric generator, generate 2.3 times more power than the blackbody emitter in a synthetic “experiment”. The model further reveals that, as compared to traditional thermal circuits, the key merit of the temperature-doubler is not to enhance the total power generation, but to convert the fluctuating thermodynamic input to a continuous and stable power output in a 24 h day-night cycle.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal photonics for sustainability;Nanophotonics;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3