Speckle tweezers for manipulation of high and low refractive index micro-particles and nano-particle loaded vesicles

Author:

Jamali Ramin1ORCID,Nazari Farzaneh2,Ghaffari Azadeh3,Velu Sabareesh K. P.4ORCID,Moradi Ali-Reza15ORCID

Affiliation:

1. Department of Physics , Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan 45137-66731 , Iran

2. Department of Physics , Yazd University , Yazd 89195-741 , Iran

3. Department of Food and Drug Control, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan 45139-56111 , Iran

4. Department of Physics , Rathinam College of Arts and Science , Coimbatore 641021 , Tamilnadu , India

5. School of Nano Science , Institute for Research in Fundamental Sciences (IPM) , Tehran 19395-5531 , Iran

Abstract

Abstract Several fundamental research and applications in biomedicine and microfluidics often require controlled manipulation of suspended micro- and nanoscale particles. Speckle tweezers (ST) by incorporating randomly distributed light fields have been used to control micro-particles with refractive indices higher than their medium and to perform manipulation tasks such as guiding and sorting. Indeed, compared to periodic potentials, ST represents a wider possibility to be operated for such tasks. Here, we extend the usefulness of ST into micro-particles of low index with respect to the surrounding. Repelling of such particles by high intensity regions into lower intensity regions makes them to be locally confined, and the confinement can be tuned by changing the average grain intensity and size of the speckle patterns. Experiments on polystyrenes and liposomes validate the procedure. Moreover, we show that ST can also manipulate the nano-particle (NP)-loaded liposomes. Interestingly, the different interactions of NP-loaded and empty liposomes with ST enable collective manipulation of their mixture using the same speckle pattern, which may be explained by inclusion of the photophoretic forces on NPs. Our results on the different behaviors between empty and non-empty vesicles may open a new window on controlling collective transportation of drug micro-containers along with its wide applications in soft matter.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3