Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface

Author:

Zhang Yaxin12,Zhao Yuncheng1,Liang Shixiong2,Zhang Bo1,Wang Lan1,Zhou Tianchi1,Kou Wei1,Lan Feng13,Zeng Hongxin1,Han Jiaguang4,Feng Zhihong2,Chen Qin1,Mazumder Pinaki3,Yang Ziqiang1

Affiliation:

1. Terahertz Science Cooperative Innovation Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

2. National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang, China

3. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA

4. Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China

Abstract

AbstractTerahertz (THz) science and technology promise unique applications in high-speed communications, high-accuracy imaging, and so on. To keep up with the demand for THz systems, THz dynamic devices should feature large phase shift modulation and high speed. To date, however, only a few devices can efficiently manipulate the phase of THz waves. In this paper, we demonstrate that efficient phase modulation of THz waves can be addressed by an active and enhanced resonant metamaterial embedded with a nanostructured 2D electron gas (2DEG) layer of a GaN high electron mobility transistor (HEMT). The enhanced resonant metaunit couples the traditional dipolar and inductance-capacitance resonances together to realize a coupling mode with enhanced resonance. Embedded with the nanostructured 2DEG layer of GaN HEMT, the resonance intensity and surface current circuit of the enhanced resonant mode in the metamaterial unit can be dynamically manipulated by the electrical control of the carrier distribution and depletion of the 3 nm 2DEG, leading to a phase shift greater than 150° in simulation. In the dynamic experiments, a 137° phase shift was achieved with an external controlling voltage of only several volts in the THz transmission mode. This work represents the first realization of a phase shift greater than 100° in a dynamic experiment in transmission mode using an active metamaterial structure with only a single layer. In addition, given the high-speed modulation ability of the HEMT, this concept provides a promising approach for the development of a fast and effective phase modulator in THz application systems.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3